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We consider the dvnamical svstom

i

l!’r
\f?)

Yy (A Y 1 A )
i

where a 18 a nonzero constant, @ and gy ave functions of tune ¢
(&) (0.2 pts) Compute two steady states ol this system
(b) (0.8 pts) Determine the eigenvalues of the Jacobian al these steady states

(¢) (1.0 pts) Discuss the stability of these atondy states

4. We consider the scalar partial differential equation
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with constant velocity ¢ € R and ¢ # 0
We want to perform a linear stability analysis of equation (5) using the wave ansatz
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for wave number & € R, wave froquencies w ¢ € and amplitude wy ¢ K.

(a) (1.0 pts) What wave frequencies w in (6) lead to a non-increasing, i.e. stable,
wave in time?

(b) (1.0 pts) Insert the wave ansats (6) into the wave equation (H) to show that i
is unstable for all nonzero ¢ ¢ K,

5. The system
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where A(p, v) is a 2 X 2-matrix with entries depending on p and v

(a) (0.8 pts) Determine A(p, 1)

(b) (0.6 pts) Compute the pigenvalues of A(p, vl Show that they are veal i v s
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